Non-periodic solutions of the Goła̧b–Schinzel type functional equation
نویسندگان
چکیده
Abstract We determine the solutions of Goła̧b-Schinzel type functional equation in class non-periodic functions. Applying this result we give a positive answer to problem raised by E. Jabłońska (Aequationes Math 87:125–133, 2014).
منابع مشابه
Non-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملPeriodic solutions of fourth-order delay differential equation
In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$ is investigated. Some new positive periodic criteria are given.
متن کاملPositive Periodic Solutions of Singular First Order Functional Difference Equation
In this paper, we consider the following singular first order functional difference equation Δx(k) = −a(k)x(k) + λb(k)f(x(k − τ(k))), k ∈ Z where f(.) is singular at x = 0. By using a Kranoselskii fixed point theorem, we will establish the existence and multiplicity of positive periodic solutions for the above problem. The results obtained are new, and some examples are given to illustrate our ...
متن کاملEventually Periodic Solutions of a Max-Type Difference Equation
We study the following max-type difference equation xn = max{A(n)/x(n-r), x(n-k)}, n = 1,2,…, where {A(n)} n=1 (+∞) is a periodic sequence with period p and k, r ∈ {1,2,…} with gcd(k, r) = 1 and k ≠ r, and the initial conditions x(1-d), x(2-d),…, x 0 are real numbers with d = max{r, k}. We show that if p = 1 (or p ≥ 2 and k is odd), then every well-defined solution of this equation is eventuall...
متن کاملPeriodic solutions for a second order nonlinear functional differential equation
The second order nonlinear delay differential equation with periodic coefficients x ′′(t)+ p(t)x ′(t)+ q(t)x(t) = r(t)x ′(t − τ(t))+ f (t, x(t), x(t − τ(t))), t ∈ R is considered in this work. By using Krasnoselskii’s fixed point theorem and the contraction mapping principle, we establish some criteria for the existence and uniqueness of periodic solutions to the delay differential equation. c ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2022
ISSN: ['1420-9012', '1422-6383']
DOI: https://doi.org/10.1007/s00025-022-01790-6